Discussion of Automatic Change-Point Detection in Time Series via Deep Learning by Li, Fearnhead, Fryzlewicz, and Wang

Shakeel Gavioli-Akilagun

LONDON SCHOOL OF ECONOMICS DEPARTMENT OF STATISTICS

August 2023

イロト イヨト イヨト

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

RSS Annual Conference

Change point tests as neural networks

A key idea is that common change point tests can be represented as single layer feed forward neural networks with RELU activation.

Lemma (3.2)

Consider the change point model:

$$y_i = \boldsymbol{\beta}' \mathbf{z}_i + \phi c_{\tau,i} + \xi_i \qquad i = 1, \dots, n$$

Where $c_{\tau,i}$ is a <u>scalar</u> covariate specific to the change at τ and $\xi_i \sim \mathcal{N}(0, \sigma^2)$. Then there is an $h^* \in \mathcal{H}_{1,2n-2}$ equivalent to the likelihood-ratio test for testing $\phi = 0$ against $\phi \neq 0$.

Apparently, the setup rules out several common change point problems.

< □ > < □ > < □ > < □ > < □ >

Change point tests as neural networks

A key idea is that common change point tests can be represented as single layer feed forward neural networks with RELU activation.

Lemma (3.2)

Consider the change point model:

$$y_i = \boldsymbol{\beta}' \mathbf{z}_i + \phi c_{\tau,i} + \xi_i$$
 $i = 1, \dots, n$

Where $c_{\tau,i}$ is a <u>scalar</u> covariate specific to the change at τ and $\xi_i \sim \mathcal{N}(0, \sigma^2)$. Then there is an $h^* \in \mathcal{H}_{1,2n-2}$ equivalent to the likelihood-ratio test for testing $\phi = 0$ against $\phi \neq 0$.

Apparently, the setup rules out several common change point problems.

2/6

イロト イボト イヨト イヨト

Change point tests as neural networks

A key idea is that common change point tests can be represented as single layer feed forward neural networks with RELU activation.

Lemma (3.2)

Consider the change point model:

$$y_i = \boldsymbol{\beta}' \mathbf{z}_i + \phi c_{\tau,i} + \xi_i$$
 $i = 1, \dots, n$

Where $c_{\tau,i}$ is a <u>scalar</u> covariate specific to the change at τ and $\xi_i \sim \mathcal{N}(0, \sigma^2)$. Then there is an $h^* \in \mathcal{H}_{1,2n-2}$ equivalent to the likelihood-ratio test for testing $\phi = 0$ against $\phi \neq 0$.

Apparently, the setup rules out several common change point problems.

イロト 不得 トイヨト イヨト

Consider the piecewise polynomial change point model

$$y_i = \begin{cases} \sum_{j=0}^{p} \alpha_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t \le \tau \\ \sum_{j=0}^{p} \beta_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t > \tau \end{cases} \qquad i = 1, \dots, n.$$

- For ξ 's distributed i.i.d. $\mathcal{N}(0,1)$ the likelihood ratio statistic (e.g. [BCF19]) for a change at location *i* is: $\mathcal{R}_i(\mathbf{Y}) = \|P_{1:i}\mathbf{Y}\|_2 + \|P_{(i+1):n}\mathbf{Y}\|_2 \|P_{1:n}\mathbf{Y}\|_2$.
- Being a linear combination of quadratic forms h^{GLR}_λ(y) = 1_{max_i R_i(y)>λ} clearly cannot be represented as a single layer neural network with RELU activation.
- ▶ The Wald test (e.g. [KOC22]) likewise cannot be represented in this way.
- Natural ways to address this: data pre-processing, different activation functions, etc.

イロト イ団ト イヨト イヨト

Consider the piecewise polynomial change point model

$$y_i = \begin{cases} \sum_{j=0}^p \alpha_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t \le \tau \\ \sum_{j=0}^p \beta_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t > \tau \end{cases} \qquad i = 1, \dots, n.$$

- For ξ 's distributed i.i.d. $\mathcal{N}(0,1)$ the likelihood ratio statistic (e.g. [BCF19]) for a change at location *i* is: $\mathcal{R}_i(\mathbf{Y}) = \|P_{1:i}\mathbf{Y}\|_2 + \|P_{(i+1):n}\mathbf{Y}\|_2 \|P_{1:n}\mathbf{Y}\|_2$.
- Being a linear combination of quadratic forms h^{GLR}_λ(y) = 1_{max_i R_i(y)>λ} clearly cannot be represented as a single layer neural network with RELU activation.
- ▶ The Wald test (e.g. [KOC22]) likewise cannot be represented in this way.
- Natural ways to address this: data pre-processing, different activation functions, etc.

Consider the piecewise polynomial change point model

$$y_i = \begin{cases} \sum_{j=0}^{p} \alpha_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t \le \tau \\ \sum_{j=0}^{p} \beta_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t > \tau \end{cases} \qquad i = 1, \dots, n.$$

- For ξ 's distributed i.i.d. $\mathcal{N}(0,1)$ the likelihood ratio statistic (e.g. [BCF19]) for a change at location *i* is: $\mathcal{R}_i(\mathbf{Y}) = \|P_{1:i}\mathbf{Y}\|_2 + \|P_{(i+1):n}\mathbf{Y}\|_2 \|P_{1:n}\mathbf{Y}\|_2$.
- Being a linear combination of quadratic forms h^{GLR}_λ(y) = 1_{max_i R_i(y)>λ} clearly cannot be represented as a single layer neural network with RELU activation.

The Wald test (e.g. [KOC22]) likewise cannot be represented in this way.

Natural ways to address this: data pre-processing, different activation functions, etc.

Consider the piecewise polynomial change point model

$$y_i = \begin{cases} \sum_{j=0}^p \alpha_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t \le \tau \\ \sum_{j=0}^p \beta_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t > \tau \end{cases} \qquad i = 1, \dots, n.$$

- For ξ 's distributed i.i.d. $\mathcal{N}(0,1)$ the likelihood ratio statistic (e.g. [BCF19]) for a change at location *i* is: $\mathcal{R}_i(\mathbf{Y}) = \|P_{1:i}\mathbf{Y}\|_2 + \|P_{(i+1):n}\mathbf{Y}\|_2 \|P_{1:n}\mathbf{Y}\|_2$.
- Being a linear combination of quadratic forms h^{GLR}_λ(y) = 1_{max_i R_i(y)>λ} clearly cannot be represented as a single layer neural network with RELU activation.
- The Wald test (e.g. [KOC22]) likewise cannot be represented in this way.
- Natural ways to address this: data pre-processing, different activation functions, etc.

Consider the piecewise polynomial change point model

$$y_i = \begin{cases} \sum_{j=0}^p \alpha_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t \le \tau \\ \sum_{j=0}^p \beta_j \left(i/n - \tau/n \right)^j + \xi_i & \text{if } t > \tau \end{cases} \qquad i = 1, \dots, n.$$

- For ξ 's distributed i.i.d. $\mathcal{N}(0,1)$ the likelihood ratio statistic (e.g. [BCF19]) for a change at location *i* is: $\mathcal{R}_i(\mathbf{Y}) = \|P_{1:i}\mathbf{Y}\|_2 + \|P_{(i+1):n}\mathbf{Y}\|_2 \|P_{1:n}\mathbf{Y}\|_2$.
- Being a linear combination of quadratic forms h^{GLR}_λ(y) = 1_{max_i R_i(y)>λ} clearly cannot be represented as a single layer neural network with RELU activation.
- ▶ The Wald test (e.g. [KOC22]) likewise cannot be represented in this way.
- Natural ways to address this: data pre-processing, different activation functions, etc.

イロト イボト イヨト イヨト

 In [GAF23] we introduce tests based on differences of local sums of the data. Interestingly, our difference based tests can be represented as a neural network.

Since D(·) is a linear operator h^{DIF}_λ(x) = 1_{{max_i|D_i(x)|>λ} can be represented as a neural network with RELU activation.

 In [GAF23] we introduce tests based on differences of local sums of the data. Interestingly, our difference based tests can be represented as a neural network.

Since D(·) is a linear operator h^{DIF}_λ(x) = 1_{max_i|D_i(x)|>λ} can be represented as a neural network with RELU activation.

 In [GAF23] we introduce tests based on differences of local sums of the data. Interestingly, our difference based tests can be represented as a neural network.

Since D(·) is a linear operator h^{DIF}_λ(x) = 1_{max_i|D_i(x)|>λ} can be represented as a neural network with RELU activation.

 In [GAF23] we introduce tests based on differences of local sums of the data. Interestingly, our difference based tests can be represented as a neural network.

Since D(·) is a linear operator h^{DIF}_λ(x) = 1_{max_i|D_i(x)|>λ} can be represented as a neural network with RELU activation.

 In [GAF23] we introduce tests based on differences of local sums of the data. Interestingly, our difference based tests can be represented as a neural network.

Since D(·) is a linear operator h^{DIF}_λ(x) = 1_{max_i|D_i(x)|>λ} can be represented as a neural network with RELU activation.

 In [GAF23] we introduce tests based on differences of local sums of the data. Interestingly, our difference based tests can be represented as a neural network.

Since D(·) is a linear operator h^{DIF}_λ(x) = 1_{max_i|D_i(x)|>λ} can be represented as a neural network with RELU activation.

(LSE c	lepartment	of Statis	tics)
`			

 In [GAF23] we introduce tests based on differences of local sums of the data. Interestingly, our difference based tests can be represented as a neural network.

Since D(·) is a linear operator h^{DIF}_λ(x) = 1_{max_i|D_i(x)|>λ} can be represented as a neural network with RELU activation.

• • • • • • • • • • • •

Using the techniques in [GAF23] one can show that neural network's localisation rate (Theorem A.6 for Algorithm 1 in the paper) for τ is of the order:

$$\mathcal{O}\left(B^2 n^{\frac{2p^*}{2p^*+1}}/\Delta_{p^*}^2\right).$$

Where:
$$\Delta_j = (\alpha_j - \beta_j), \ \delta = \tau \land (n - \tau), \ p^* \in \operatorname{argmax}_j \left\{ |\Delta_j| \left(\delta/n \right)^j \right\}.$$

• This is unimprovable up to the B^2 term.

When analyzing the behavior of neural networks on change point problems it may be useful to think in terms of difference based tests.

5/6

Using the techniques in [GAF23] one can show that neural network's localisation rate (Theorem A.6 for Algorithm 1 in the paper) for τ is of the order:

$$\mathcal{O}\left(B^2 n^{\frac{2p^*}{2p^*+1}}/\Delta_{p^*}^2\right).$$

Where:
$$\Delta_j = (\alpha_j - \beta_j), \ \delta = \tau \land (n - \tau), \ p^* \in \operatorname{argmax}_j \left\{ |\Delta_j| \left(\delta/n \right)^j \right\}.$$

• This is unimprovable up to the B^2 term.

When analyzing the behavior of neural networks on change point problems it may be useful to think in terms of difference based tests.

5/6

Using the techniques in [GAF23] one can show that neural network's localisation rate (Theorem A.6 for Algorithm 1 in the paper) for τ is of the order:

$$\mathcal{O}\left(B^2 n^{\frac{2p^*}{2p^*+1}}/\Delta_{p^*}^2\right).$$

Where:
$$\Delta_j = (\alpha_j - \beta_j), \ \delta = \tau \land (n - \tau), \ p^* \in \operatorname{argmax}_j \left\{ \left| \Delta_j \right| (\delta/n)^j
ight\}.$$

- This is unimprovable up to the B^2 term.
- When analyzing the behavior of neural networks on change point problems it may be useful to think in terms of difference based tests.

5/6

References

- [BCF19] Rafal Baranowski, Yining Chen, and Piotr Fryzlewicz. Narrowest-over-threshold detection of multiple change points and change-point-like features. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 81(3):649–672, 2019.
- [GAF23] Shakeel Gavioli-Akilagun and Piotr Fryzlewicz. Fast and optimal inference for change points in piecewise polynomials via differencing. arXiv preprint arXiv:2307.03639, 2023.
- [KOC22] Joonpyo Kim, Hee-Seok Oh, and Haeran Cho. Moving sum procedure for change point detection under piecewise linearity. arXiv preprint arXiv:2208.04900, 2022.